pidgin/pidgin

Added tag v2.14.2 for changeset 2eb25613d054
release-2.x.y
2021-04-01, Gary Kramlich
1dd6e5170860
Added tag v2.14.2 for changeset 2eb25613d054
/*
* purple
*
* Purple is the legal property of its developers, whose names are too numerous
* to list here. Please refer to the COPYRIGHT file distributed with this
* source distribution.
*
* Original des taken from gpg
*
* des.c - DES and Triple-DES encryption/decryption Algorithm
* Copyright (C) 1998 Free Software Foundation, Inc.
*
* Please see below for more legal information!
*
* According to the definition of DES in FIPS PUB 46-2 from December 1993.
* For a description of triple encryption, see:
* Bruce Schneier: Applied Cryptography. Second Edition.
* John Wiley & Sons, 1996. ISBN 0-471-12845-7. Pages 358 ff.
*
* This file is part of GnuPG.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1301 USA
*/
#include <cipher.h>
/******************************************************************************
* DES
*****************************************************************************/
typedef struct _des_ctx
{
guint32 encrypt_subkeys[32];
guint32 decrypt_subkeys[32];
} des_ctx[1];
/*
* The s-box values are permuted according to the 'primitive function P'
*/
static const guint32 sbox1[64] =
{
0x00808200, 0x00000000, 0x00008000, 0x00808202, 0x00808002, 0x00008202, 0x00000002, 0x00008000,
0x00000200, 0x00808200, 0x00808202, 0x00000200, 0x00800202, 0x00808002, 0x00800000, 0x00000002,
0x00000202, 0x00800200, 0x00800200, 0x00008200, 0x00008200, 0x00808000, 0x00808000, 0x00800202,
0x00008002, 0x00800002, 0x00800002, 0x00008002, 0x00000000, 0x00000202, 0x00008202, 0x00800000,
0x00008000, 0x00808202, 0x00000002, 0x00808000, 0x00808200, 0x00800000, 0x00800000, 0x00000200,
0x00808002, 0x00008000, 0x00008200, 0x00800002, 0x00000200, 0x00000002, 0x00800202, 0x00008202,
0x00808202, 0x00008002, 0x00808000, 0x00800202, 0x00800002, 0x00000202, 0x00008202, 0x00808200,
0x00000202, 0x00800200, 0x00800200, 0x00000000, 0x00008002, 0x00008200, 0x00000000, 0x00808002
};
static const guint32 sbox2[64] =
{
0x40084010, 0x40004000, 0x00004000, 0x00084010, 0x00080000, 0x00000010, 0x40080010, 0x40004010,
0x40000010, 0x40084010, 0x40084000, 0x40000000, 0x40004000, 0x00080000, 0x00000010, 0x40080010,
0x00084000, 0x00080010, 0x40004010, 0x00000000, 0x40000000, 0x00004000, 0x00084010, 0x40080000,
0x00080010, 0x40000010, 0x00000000, 0x00084000, 0x00004010, 0x40084000, 0x40080000, 0x00004010,
0x00000000, 0x00084010, 0x40080010, 0x00080000, 0x40004010, 0x40080000, 0x40084000, 0x00004000,
0x40080000, 0x40004000, 0x00000010, 0x40084010, 0x00084010, 0x00000010, 0x00004000, 0x40000000,
0x00004010, 0x40084000, 0x00080000, 0x40000010, 0x00080010, 0x40004010, 0x40000010, 0x00080010,
0x00084000, 0x00000000, 0x40004000, 0x00004010, 0x40000000, 0x40080010, 0x40084010, 0x00084000
};
static const guint32 sbox3[64] =
{
0x00000104, 0x04010100, 0x00000000, 0x04010004, 0x04000100, 0x00000000, 0x00010104, 0x04000100,
0x00010004, 0x04000004, 0x04000004, 0x00010000, 0x04010104, 0x00010004, 0x04010000, 0x00000104,
0x04000000, 0x00000004, 0x04010100, 0x00000100, 0x00010100, 0x04010000, 0x04010004, 0x00010104,
0x04000104, 0x00010100, 0x00010000, 0x04000104, 0x00000004, 0x04010104, 0x00000100, 0x04000000,
0x04010100, 0x04000000, 0x00010004, 0x00000104, 0x00010000, 0x04010100, 0x04000100, 0x00000000,
0x00000100, 0x00010004, 0x04010104, 0x04000100, 0x04000004, 0x00000100, 0x00000000, 0x04010004,
0x04000104, 0x00010000, 0x04000000, 0x04010104, 0x00000004, 0x00010104, 0x00010100, 0x04000004,
0x04010000, 0x04000104, 0x00000104, 0x04010000, 0x00010104, 0x00000004, 0x04010004, 0x00010100
};
static const guint32 sbox4[64] =
{
0x80401000, 0x80001040, 0x80001040, 0x00000040, 0x00401040, 0x80400040, 0x80400000, 0x80001000,
0x00000000, 0x00401000, 0x00401000, 0x80401040, 0x80000040, 0x00000000, 0x00400040, 0x80400000,
0x80000000, 0x00001000, 0x00400000, 0x80401000, 0x00000040, 0x00400000, 0x80001000, 0x00001040,
0x80400040, 0x80000000, 0x00001040, 0x00400040, 0x00001000, 0x00401040, 0x80401040, 0x80000040,
0x00400040, 0x80400000, 0x00401000, 0x80401040, 0x80000040, 0x00000000, 0x00000000, 0x00401000,
0x00001040, 0x00400040, 0x80400040, 0x80000000, 0x80401000, 0x80001040, 0x80001040, 0x00000040,
0x80401040, 0x80000040, 0x80000000, 0x00001000, 0x80400000, 0x80001000, 0x00401040, 0x80400040,
0x80001000, 0x00001040, 0x00400000, 0x80401000, 0x00000040, 0x00400000, 0x00001000, 0x00401040
};
static const guint32 sbox5[64] =
{
0x00000080, 0x01040080, 0x01040000, 0x21000080, 0x00040000, 0x00000080, 0x20000000, 0x01040000,
0x20040080, 0x00040000, 0x01000080, 0x20040080, 0x21000080, 0x21040000, 0x00040080, 0x20000000,
0x01000000, 0x20040000, 0x20040000, 0x00000000, 0x20000080, 0x21040080, 0x21040080, 0x01000080,
0x21040000, 0x20000080, 0x00000000, 0x21000000, 0x01040080, 0x01000000, 0x21000000, 0x00040080,
0x00040000, 0x21000080, 0x00000080, 0x01000000, 0x20000000, 0x01040000, 0x21000080, 0x20040080,
0x01000080, 0x20000000, 0x21040000, 0x01040080, 0x20040080, 0x00000080, 0x01000000, 0x21040000,
0x21040080, 0x00040080, 0x21000000, 0x21040080, 0x01040000, 0x00000000, 0x20040000, 0x21000000,
0x00040080, 0x01000080, 0x20000080, 0x00040000, 0x00000000, 0x20040000, 0x01040080, 0x20000080
};
static const guint32 sbox6[64] =
{
0x10000008, 0x10200000, 0x00002000, 0x10202008, 0x10200000, 0x00000008, 0x10202008, 0x00200000,
0x10002000, 0x00202008, 0x00200000, 0x10000008, 0x00200008, 0x10002000, 0x10000000, 0x00002008,
0x00000000, 0x00200008, 0x10002008, 0x00002000, 0x00202000, 0x10002008, 0x00000008, 0x10200008,
0x10200008, 0x00000000, 0x00202008, 0x10202000, 0x00002008, 0x00202000, 0x10202000, 0x10000000,
0x10002000, 0x00000008, 0x10200008, 0x00202000, 0x10202008, 0x00200000, 0x00002008, 0x10000008,
0x00200000, 0x10002000, 0x10000000, 0x00002008, 0x10000008, 0x10202008, 0x00202000, 0x10200000,
0x00202008, 0x10202000, 0x00000000, 0x10200008, 0x00000008, 0x00002000, 0x10200000, 0x00202008,
0x00002000, 0x00200008, 0x10002008, 0x00000000, 0x10202000, 0x10000000, 0x00200008, 0x10002008
};
static const guint32 sbox7[64] =
{
0x00100000, 0x02100001, 0x02000401, 0x00000000, 0x00000400, 0x02000401, 0x00100401, 0x02100400,
0x02100401, 0x00100000, 0x00000000, 0x02000001, 0x00000001, 0x02000000, 0x02100001, 0x00000401,
0x02000400, 0x00100401, 0x00100001, 0x02000400, 0x02000001, 0x02100000, 0x02100400, 0x00100001,
0x02100000, 0x00000400, 0x00000401, 0x02100401, 0x00100400, 0x00000001, 0x02000000, 0x00100400,
0x02000000, 0x00100400, 0x00100000, 0x02000401, 0x02000401, 0x02100001, 0x02100001, 0x00000001,
0x00100001, 0x02000000, 0x02000400, 0x00100000, 0x02100400, 0x00000401, 0x00100401, 0x02100400,
0x00000401, 0x02000001, 0x02100401, 0x02100000, 0x00100400, 0x00000000, 0x00000001, 0x02100401,
0x00000000, 0x00100401, 0x02100000, 0x00000400, 0x02000001, 0x02000400, 0x00000400, 0x00100001
};
static const guint32 sbox8[64] =
{
0x08000820, 0x00000800, 0x00020000, 0x08020820, 0x08000000, 0x08000820, 0x00000020, 0x08000000,
0x00020020, 0x08020000, 0x08020820, 0x00020800, 0x08020800, 0x00020820, 0x00000800, 0x00000020,
0x08020000, 0x08000020, 0x08000800, 0x00000820, 0x00020800, 0x00020020, 0x08020020, 0x08020800,
0x00000820, 0x00000000, 0x00000000, 0x08020020, 0x08000020, 0x08000800, 0x00020820, 0x00020000,
0x00020820, 0x00020000, 0x08020800, 0x00000800, 0x00000020, 0x08020020, 0x00000800, 0x00020820,
0x08000800, 0x00000020, 0x08000020, 0x08020000, 0x08020020, 0x08000000, 0x00020000, 0x08000820,
0x00000000, 0x08020820, 0x00020020, 0x08000020, 0x08020000, 0x08000800, 0x08000820, 0x00000000,
0x08020820, 0x00020800, 0x00020800, 0x00000820, 0x00000820, 0x00020020, 0x08000000, 0x08020800
};
/*
* * These two tables are part of the 'permuted choice 1' function.
* * In this implementation several speed improvements are done.
* */
static const guint32 leftkey_swap[16] =
{
0x00000000, 0x00000001, 0x00000100, 0x00000101,
0x00010000, 0x00010001, 0x00010100, 0x00010101,
0x01000000, 0x01000001, 0x01000100, 0x01000101,
0x01010000, 0x01010001, 0x01010100, 0x01010101
};
static const guint32 rightkey_swap[16] =
{
0x00000000, 0x01000000, 0x00010000, 0x01010000,
0x00000100, 0x01000100, 0x00010100, 0x01010100,
0x00000001, 0x01000001, 0x00010001, 0x01010001,
0x00000101, 0x01000101, 0x00010101, 0x01010101,
};
/*
* Numbers of left shifts per round for encryption subkey schedule
* To calculate the decryption key scheduling we just reverse the
* ordering of the subkeys so we can omit the table for decryption
* subkey schedule.
*/
static const guint8 encrypt_rotate_tab[16] =
{
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
/*
* Macro to swap bits across two words
**/
#define DO_PERMUTATION(a, temp, b, offset, mask) \
temp = ((a>>offset) ^ b) & mask; \
b ^= temp; \
a ^= temp<<offset;
/*
* This performs the 'initial permutation' for the data to be encrypted or decrypted
**/
#define INITIAL_PERMUTATION(left, temp, right) \
DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f) \
DO_PERMUTATION(left, temp, right, 16, 0x0000ffff) \
DO_PERMUTATION(right, temp, left, 2, 0x33333333) \
DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff) \
DO_PERMUTATION(left, temp, right, 1, 0x55555555)
/*
* The 'inverse initial permutation'
**/
#define FINAL_PERMUTATION(left, temp, right) \
DO_PERMUTATION(left, temp, right, 1, 0x55555555) \
DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff) \
DO_PERMUTATION(right, temp, left, 2, 0x33333333) \
DO_PERMUTATION(left, temp, right, 16, 0x0000ffff) \
DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f)
/*
* A full DES round including 'expansion function', 'sbox substitution'
* and 'primitive function P' but without swapping the left and right word.
**/
#define DES_ROUND(from, to, work, subkey) \
work = ((from<<1) | (from>>31)) ^ *subkey++; \
to ^= sbox8[ work & 0x3f ]; \
to ^= sbox6[ (work>>8) & 0x3f ]; \
to ^= sbox4[ (work>>16) & 0x3f ]; \
to ^= sbox2[ (work>>24) & 0x3f ]; \
work = ((from>>3) | (from<<29)) ^ *subkey++; \
to ^= sbox7[ work & 0x3f ]; \
to ^= sbox5[ (work>>8) & 0x3f ]; \
to ^= sbox3[ (work>>16) & 0x3f ]; \
to ^= sbox1[ (work>>24) & 0x3f ];
/*
* Macros to convert 8 bytes from/to 32bit words
**/
#define READ_64BIT_DATA(data, left, right) \
left = (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3]; \
right = (data[4] << 24) | (data[5] << 16) | (data[6] << 8) | data[7];
#define WRITE_64BIT_DATA(data, left, right) \
data[0] = (left >> 24) &0xff; data[1] = (left >> 16) &0xff; \
data[2] = (left >> 8) &0xff; data[3] = left &0xff; \
data[4] = (right >> 24) &0xff; data[5] = (right >> 16) &0xff; \
data[6] = (right >> 8) &0xff; data[7] = right &0xff;
/*
* des_key_schedule(): Calculate 16 subkeys pairs (even/odd) for
* 16 encryption rounds.
* To calculate subkeys for decryption the caller
* have to reorder the generated subkeys.
*
* rawkey: 8 Bytes of key data
* subkey: Array of at least 32 guint32s. Will be filled
* with calculated subkeys.
*
**/
static void
des_key_schedule (const guint8 * rawkey, guint32 * subkey)
{
guint32 left, right, work;
int round;
READ_64BIT_DATA (rawkey, left, right)
DO_PERMUTATION (right, work, left, 4, 0x0f0f0f0f)
DO_PERMUTATION (right, work, left, 0, 0x10101010)
left = (leftkey_swap[(left >> 0) & 0xf] << 3) | (leftkey_swap[(left >> 8) & 0xf] << 2)
| (leftkey_swap[(left >> 16) & 0xf] << 1) | (leftkey_swap[(left >> 24) & 0xf])
| (leftkey_swap[(left >> 5) & 0xf] << 7) | (leftkey_swap[(left >> 13) & 0xf] << 6)
| (leftkey_swap[(left >> 21) & 0xf] << 5) | (leftkey_swap[(left >> 29) & 0xf] << 4);
left &= 0x0fffffff;
right = (rightkey_swap[(right >> 1) & 0xf] << 3) | (rightkey_swap[(right >> 9) & 0xf] << 2)
| (rightkey_swap[(right >> 17) & 0xf] << 1) | (rightkey_swap[(right >> 25) & 0xf])
| (rightkey_swap[(right >> 4) & 0xf] << 7) | (rightkey_swap[(right >> 12) & 0xf] << 6)
| (rightkey_swap[(right >> 20) & 0xf] << 5) | (rightkey_swap[(right >> 28) & 0xf] << 4);
right &= 0x0fffffff;
for (round = 0; round < 16; ++round)
{
left = ((left << encrypt_rotate_tab[round]) | (left >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;
right = ((right << encrypt_rotate_tab[round]) | (right >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;
*subkey++ = ((left << 4) & 0x24000000)
| ((left << 28) & 0x10000000)
| ((left << 14) & 0x08000000)
| ((left << 18) & 0x02080000)
| ((left << 6) & 0x01000000)
| ((left << 9) & 0x00200000)
| ((left >> 1) & 0x00100000)
| ((left << 10) & 0x00040000)
| ((left << 2) & 0x00020000)
| ((left >> 10) & 0x00010000)
| ((right >> 13) & 0x00002000)
| ((right >> 4) & 0x00001000)
| ((right << 6) & 0x00000800)
| ((right >> 1) & 0x00000400)
| ((right >> 14) & 0x00000200)
| (right & 0x00000100)
| ((right >> 5) & 0x00000020)
| ((right >> 10) & 0x00000010)
| ((right >> 3) & 0x00000008)
| ((right >> 18) & 0x00000004)
| ((right >> 26) & 0x00000002)
| ((right >> 24) & 0x00000001);
*subkey++ = ((left << 15) & 0x20000000)
| ((left << 17) & 0x10000000)
| ((left << 10) & 0x08000000)
| ((left << 22) & 0x04000000)
| ((left >> 2) & 0x02000000)
| ((left << 1) & 0x01000000)
| ((left << 16) & 0x00200000)
| ((left << 11) & 0x00100000)
| ((left << 3) & 0x00080000)
| ((left >> 6) & 0x00040000)
| ((left << 15) & 0x00020000)
| ((left >> 4) & 0x00010000)
| ((right >> 2) & 0x00002000)
| ((right << 8) & 0x00001000)
| ((right >> 14) & 0x00000808)
| ((right >> 9) & 0x00000400)
| ((right) & 0x00000200)
| ((right << 7) & 0x00000100)
| ((right >> 7) & 0x00000020)
| ((right >> 3) & 0x00000011)
| ((right << 2) & 0x00000004)
| ((right >> 21) & 0x00000002);
}
}
/*
* Fill a DES context with subkeys calculated from a 64bit key.
* Does not check parity bits, but simply ignore them.
* Does not check for weak keys.
**/
static void
des_set_key (PurpleCipherContext *context, const guchar * key)
{
struct _des_ctx *ctx = purple_cipher_context_get_data(context);
int i;
des_key_schedule (key, ctx->encrypt_subkeys);
for(i=0; i<32; i+=2)
{
ctx->decrypt_subkeys[i] = ctx->encrypt_subkeys[30-i];
ctx->decrypt_subkeys[i+1] = ctx->encrypt_subkeys[31-i];
}
}
/*
* Electronic Codebook Mode DES encryption/decryption of data according
* to 'mode'.
**/
static int
des_ecb_crypt (struct _des_ctx *ctx, const guint8 * from, guint8 * to, int mode)
{
guint32 left, right, work;
guint32 *keys;
keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys;
READ_64BIT_DATA (from, left, right)
INITIAL_PERMUTATION (left, work, right)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
FINAL_PERMUTATION (right, work, left)
WRITE_64BIT_DATA (to, right, left)
return 0;
}
static gint
des_encrypt(PurpleCipherContext *context, const guchar data[],
size_t len, guchar output[], size_t *outlen)
{
int offset = 0;
int i = 0;
int tmp;
guint8 buf[8] = {0,0,0,0,0,0,0,0};
while(offset+8<=len) {
des_ecb_crypt(purple_cipher_context_get_data(context),
data+offset,
output+offset,
0);
offset+=8;
}
*outlen = len;
if(offset<len) {
*outlen += len - offset;
tmp = offset;
while(tmp<len) {
buf[i++] = data[tmp];
tmp++;
}
des_ecb_crypt(purple_cipher_context_get_data(context),
buf,
output+offset,
0);
}
return 0;
}
static gint
des_decrypt(PurpleCipherContext *context, const guchar data[],
size_t len, guchar output[], size_t *outlen)
{
int offset = 0;
int i = 0;
int tmp;
guint8 buf[8] = {0,0,0,0,0,0,0,0};
while(offset+8<=len) {
des_ecb_crypt(purple_cipher_context_get_data(context),
data+offset,
output+offset,
1);
offset+=8;
}
*outlen = len;
if(offset<len) {
*outlen += len - offset;
tmp = offset;
while(tmp<len) {
buf[i++] = data[tmp];
tmp++;
}
des_ecb_crypt(purple_cipher_context_get_data(context),
buf,
output+offset,
1);
}
return 0;
}
static void
des_init(PurpleCipherContext *context, gpointer extra) {
struct _des_ctx *mctx;
mctx = g_new0(struct _des_ctx, 1);
purple_cipher_context_set_data(context, mctx);
}
static void
des_uninit(PurpleCipherContext *context) {
struct _des_ctx *des_context;
des_context = purple_cipher_context_get_data(context);
memset(des_context, 0, sizeof(*des_context));
g_free(des_context);
des_context = NULL;
}
static PurpleCipherOps DESOps = {
NULL, /* Set option */
NULL, /* Get option */
des_init, /* init */
NULL, /* reset */
des_uninit, /* uninit */
NULL, /* set iv */
NULL, /* append */
NULL, /* digest */
des_encrypt, /* encrypt */
des_decrypt, /* decrypt */
NULL, /* set salt */
NULL, /* get salt size */
des_set_key, /* set key */
NULL, /* get key size */
NULL, /* set batch mode */
NULL, /* get batch mode */
NULL, /* get block size */
NULL /* set key with len */
};
/******************************************************************************
* Triple-DES
*****************************************************************************/
typedef struct _des3_ctx
{
PurpleCipherBatchMode mode;
guchar iv[8];
/* First key for encryption */
struct _des_ctx key1;
/* Second key for decryption */
struct _des_ctx key2;
/* Third key for encryption */
struct _des_ctx key3;
} des3_ctx[1];
/*
* Fill a DES3 context with subkeys calculated from 3 64bit key.
* Does not check parity bits, but simply ignore them.
* Does not check for weak keys.
**/
static void
des3_set_key(PurpleCipherContext *context, const guchar * key)
{
struct _des3_ctx *ctx = purple_cipher_context_get_data(context);
int i;
des_key_schedule (key + 0, ctx->key1.encrypt_subkeys);
des_key_schedule (key + 8, ctx->key2.encrypt_subkeys);
des_key_schedule (key + 16, ctx->key3.encrypt_subkeys);
for (i = 0; i < 32; i += 2)
{
ctx->key1.decrypt_subkeys[i] = ctx->key1.encrypt_subkeys[30-i];
ctx->key1.decrypt_subkeys[i+1] = ctx->key1.encrypt_subkeys[31-i];
ctx->key2.decrypt_subkeys[i] = ctx->key2.encrypt_subkeys[30-i];
ctx->key2.decrypt_subkeys[i+1] = ctx->key2.encrypt_subkeys[31-i];
ctx->key3.decrypt_subkeys[i] = ctx->key3.encrypt_subkeys[30-i];
ctx->key3.decrypt_subkeys[i+1] = ctx->key3.encrypt_subkeys[31-i];
}
}
static gint
des3_ecb_encrypt(struct _des3_ctx *ctx, const guchar data[],
size_t len, guchar output[], size_t *outlen)
{
int offset = 0;
int i = 0;
int tmp;
guint8 buf[8] = {0,0,0,0,0,0,0,0};
while (offset + 8 <= len) {
des_ecb_crypt(&ctx->key1,
data+offset,
output+offset,
0);
des_ecb_crypt(&ctx->key2,
output+offset,
buf,
1);
des_ecb_crypt(&ctx->key3,
buf,
output+offset,
0);
offset += 8;
}
*outlen = len;
if (offset < len) {
*outlen += len - offset;
tmp = offset;
memset(buf, 0, 8);
while (tmp < len) {
buf[i++] = data[tmp];
tmp++;
}
des_ecb_crypt(&ctx->key1,
buf,
output+offset,
0);
des_ecb_crypt(&ctx->key2,
output+offset,
buf,
1);
des_ecb_crypt(&ctx->key3,
buf,
output+offset,
0);
}
return 0;
}
static gint
des3_cbc_encrypt(struct _des3_ctx *ctx, const guchar data[],
size_t len, guchar output[], size_t *outlen)
{
int offset = 0;
int i = 0;
int tmp;
guint8 buf[8];
memcpy(buf, ctx->iv, 8);
while (offset + 8 <= len) {
for (i = 0; i < 8; i++)
buf[i] ^= data[offset + i];
des_ecb_crypt(&ctx->key1,
buf,
output+offset,
0);
des_ecb_crypt(&ctx->key2,
output+offset,
buf,
1);
des_ecb_crypt(&ctx->key3,
buf,
output+offset,
0);
memcpy(buf, output+offset, 8);
offset += 8;
}
*outlen = len;
if (offset < len) {
*outlen += len - offset;
tmp = offset;
i = 0;
while (tmp < len) {
buf[i++] ^= data[tmp];
tmp++;
}
des_ecb_crypt(&ctx->key1,
buf,
output+offset,
0);
des_ecb_crypt(&ctx->key2,
output+offset,
buf,
1);
des_ecb_crypt(&ctx->key3,
buf,
output+offset,
0);
}
return 0;
}
static gint
des3_encrypt(PurpleCipherContext *context, const guchar data[],
size_t len, guchar output[], size_t *outlen)
{
struct _des3_ctx *ctx = purple_cipher_context_get_data(context);
if (ctx->mode == PURPLE_CIPHER_BATCH_MODE_ECB) {
return des3_ecb_encrypt(ctx, data, len, output, outlen);
} else if (ctx->mode == PURPLE_CIPHER_BATCH_MODE_CBC) {
return des3_cbc_encrypt(ctx, data, len, output, outlen);
} else {
g_return_val_if_reached(0);
}
return 0;
}
static gint
des3_ecb_decrypt(struct _des3_ctx *ctx, const guchar data[],
size_t len, guchar output[], size_t *outlen)
{
int offset = 0;
int i = 0;
int tmp;
guint8 buf[8] = {0,0,0,0,0,0,0,0};
while (offset + 8 <= len) {
/* NOTE: Apply key in reverse */
des_ecb_crypt(&ctx->key3,
data+offset,
output+offset,
1);
des_ecb_crypt(&ctx->key2,
output+offset,
buf,
0);
des_ecb_crypt(&ctx->key1,
buf,
output+offset,
1);
offset+=8;
}
*outlen = len;
if (offset < len) {
*outlen += len - offset;
tmp = offset;
memset(buf, 0, 8);
while (tmp < len) {
buf[i++] = data[tmp];
tmp++;
}
des_ecb_crypt(&ctx->key3,
buf,
output+offset,
1);
des_ecb_crypt(&ctx->key2,
output+offset,
buf,
0);
des_ecb_crypt(&ctx->key1,
buf,
output+offset,
1);
}
return 0;
}
static gint
des3_cbc_decrypt(struct _des3_ctx *ctx, const guchar data[],
size_t len, guchar output[], size_t *outlen)
{
int offset = 0;
int i = 0;
int tmp;
guint8 buf[8] = {0,0,0,0,0,0,0,0};
guint8 link[8];
memcpy(link, ctx->iv, 8);
while (offset + 8 <= len) {
des_ecb_crypt(&ctx->key3,
data+offset,
output+offset,
1);
des_ecb_crypt(&ctx->key2,
output+offset,
buf,
0);
des_ecb_crypt(&ctx->key1,
buf,
output+offset,
1);
for (i = 0; i < 8; i++)
output[offset + i] ^= link[i];
memcpy(link, data + offset, 8);
offset+=8;
}
*outlen = len;
if(offset<len) {
*outlen += len - offset;
tmp = offset;
memset(buf, 0, 8);
i = 0;
while(tmp<len) {
buf[i++] = data[tmp];
tmp++;
}
des_ecb_crypt(&ctx->key3,
buf,
output+offset,
1);
des_ecb_crypt(&ctx->key2,
output+offset,
buf,
0);
des_ecb_crypt(&ctx->key1,
buf,
output+offset,
1);
for (i = 0; i < 8; i++)
output[offset + i] ^= link[i];
}
return 0;
}
static gint
des3_decrypt(PurpleCipherContext *context, const guchar data[],
size_t len, guchar output[], size_t *outlen)
{
struct _des3_ctx *ctx = purple_cipher_context_get_data(context);
if (ctx->mode == PURPLE_CIPHER_BATCH_MODE_ECB) {
return des3_ecb_decrypt(ctx, data, len, output, outlen);
} else if (ctx->mode == PURPLE_CIPHER_BATCH_MODE_CBC) {
return des3_cbc_decrypt(ctx, data, len, output, outlen);
} else {
g_return_val_if_reached(0);
}
return 0;
}
static void
des3_set_batch(PurpleCipherContext *context, PurpleCipherBatchMode mode)
{
struct _des3_ctx *ctx = purple_cipher_context_get_data(context);
ctx->mode = mode;
}
static PurpleCipherBatchMode
des3_get_batch(PurpleCipherContext *context)
{
struct _des3_ctx *ctx = purple_cipher_context_get_data(context);
return ctx->mode;
}
static void
des3_set_iv(PurpleCipherContext *context, guchar *iv, size_t len)
{
struct _des3_ctx *ctx;
g_return_if_fail(len == 8);
ctx = purple_cipher_context_get_data(context);
memcpy(ctx->iv, iv, len);
}
static void
des3_init(PurpleCipherContext *context, gpointer extra)
{
struct _des3_ctx *mctx;
mctx = g_new0(struct _des3_ctx, 1);
purple_cipher_context_set_data(context, mctx);
}
static void
des3_uninit(PurpleCipherContext *context)
{
struct _des3_ctx *des3_context;
des3_context = purple_cipher_context_get_data(context);
memset(des3_context, 0, sizeof(*des3_context));
g_free(des3_context);
des3_context = NULL;
}
static PurpleCipherOps DES3Ops = {
NULL, /* Set option */
NULL, /* Get option */
des3_init, /* init */
NULL, /* reset */
des3_uninit, /* uninit */
des3_set_iv, /* set iv */
NULL, /* append */
NULL, /* digest */
des3_encrypt, /* encrypt */
des3_decrypt, /* decrypt */
NULL, /* set salt */
NULL, /* get salt size */
des3_set_key, /* set key */
NULL, /* get key size */
des3_set_batch, /* set batch mode */
des3_get_batch, /* get batch mode */
NULL, /* get block size */
NULL /* set key with len */
};
/******************************************************************************
* Registration
*****************************************************************************/
PurpleCipherOps *
purple_des_cipher_get_ops(void) {
return &DESOps;
}
PurpleCipherOps *
purple_des3_cipher_get_ops(void) {
return &DES3Ops;
}